Histone H2B Monoubiquitination Functions Cooperatively with FACT to Regulate Elongation by RNA Polymerase II

نویسندگان

  • Rushad Pavri
  • Bing Zhu
  • Guohong Li
  • Patrick Trojer
  • Subhrangsu Mandal
  • Ali Shilatifard
  • Danny Reinberg
چکیده

Over the past years, a large number of histone posttranslational modifications have been described, some of which function to attain a repressed chromatin structure, while others facilitate activation by allowing access of regulators to DNA. Histone H2B monoubiquitination is a mark associated with transcriptional activity. Using a highly reconstituted chromatin-transcription system incorporating the inducible RARbeta2 promoter, we find that the establishment of H2B monoubiquitination by RNF20/40 and UbcH6 is dependent on the transcription elongation regulator complex PAF, the histone chaperone FACT, and transcription. H2B monoubiquitination facilitates FACT function, thereby stimulating transcript elongation and the generation of longer transcripts. These in vitro analyses and corroborating in vivo experiments demonstrate that elongation by RNA polymerase II through the nucleosomal barrier is minimally dependent upon (1) FACT and (2) the recruitment of PAF and the H2B monoubiquitination machinery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elongin B-Mediated Epigenetic Alteration of Viral Chromatin Correlates with Efficient Human Cytomegalovirus Gene Expression and Replication

UNLABELLED Elongins B and C are members of complexes that increase the efficiency of transcriptional elongation by RNA polymerase II (RNAPII) and enhance the monoubiquitination of histone H2B, an epigenetic mark of actively transcribed genes. Here we show that, in addition to its role in facilitating transcription of the cellular genome, elongin B also enhances gene expression from the double-s...

متن کامل

de FACTo nucleosome dynamics.

The factors required for the delivery of RNA polymerase II to class II promoters using naked DNA were all identified by 1998, yet their exact mechanisms of action were not fully understood in all cases, and in some instances, their precise function still remains unknown. Nonetheless, a complete understanding of the complexity of the RNA polymerase II transcription cycle necessitated the develop...

متن کامل

A Positive Feedback Loop Links Opposing Functions of P-TEFb/Cdk9 and Histone H2B Ubiquitylation to Regulate Transcript Elongation in Fission Yeast

Transcript elongation by RNA polymerase II (RNAPII) is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1) plays a key role in coordinating co-transcriptional histone modification by promoting site-specific met...

متن کامل

Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5.

Elongation by RNA polymerase II (RNAPII) is a finely regulated process in which many elongation factors contribute to gene regulation. Among these factors are the polymerase-associated factor (PAF) complex, which associates with RNAPII, and several cyclin-dependent kinases, including positive transcription elongation factor b (P-TEFb) in humans and BUR kinase (Bur1-Bur2) and C-terminal domain (...

متن کامل

Rescue of DNA damage-stalled RNA Pol II: histone H2B in action.

RNA Pol II elongation in eukaryotes is coupled with a series of histone modifications. Elongating RNA Pol II can be strongly stalled by lesions on the DNA template. However, it is unclear whether RNA Pol II stalling affects elongation-associated histone modifications. We have explored this important question by investigating the function of histone H2B mono-ubiquitylation (H2Bub), a well-charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2006